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1. F’hys. A Math. Gen. 27 (1994) 1179-1189. Wnted in the UK 

The geometric phase for chaotic unitary families 

J M Robbinst 
H H Wills physics Laboratory, %ddl Avenue, Bristol BS8 1% UK 

Received 10 August 1993 

Abstract. We consider the geometric phase for a family of quannunlclassical Hamiltoniaos in 
which the effect of changing parameters is simply to induce unitary/canonicd transformations. 
h this case the classical limit of the geometric phase is eaMy obtained. even when the classical 
motion is chaotic. The results agree with those previously obtained for general chaotic families, 
but may be expressed in a simpler form, not involving time integrals of melation functions. It 
is also stnightfonvard to establish some results which are pmblematic in the general case, for 
example the form of periodic orbit conections, and the closedness of the classical 2-form. If the 
parameten are regarded as dynamical variables, evolving slowly so as to maintain adiabaticily, 
they are subject to geometric magnetism, but nos in c o m t  to the general ease. deterministic 
friction and Bom-Oppenheimer fones. Examples including families of translated and rotated 
systems are discussed 

1. Introduction 

In the theory of the geometric phase (Berry 1984, Shapere and Wilczek 1989), there are 
a number of interesting questions related to the classical (71 -+ 0) limit. This limit is best 
understood for integrable systems, for which Hannay (1985) found angle anholonomies 
along the tori of cycled integrable systems, and Berry (1984) established the semiclassical 
correspondence between the geometric phase and the Hannay angles. 

In Robbins and Beny (1992a). hereinafter referred to as RB, we obtained the classical 
l i t  of the geometric phase 2-form for classically chaotic Hamiltonians, along with 
semiclassical corrections associated with periodic orbits. In Berry and Robbins (1993) 
we showed that the classical 2-form produces a Lorentz-lie reaction force on the 
parameters, ‘geometric magnetism’, which is the antisymmetric partner of a dissipative 
force, ‘deterministic friction’, previously found by Wilkinson (1990). Whether the classical 
2-form describes an anholonomy in adiabatically cycled chaotic systems is an open question. 

Here we consider a special family of chaotic Hamiltonians for which the classical limit 
of the geometric phase is easily obtained. For these unitary/canonical families, a change 
in parameters amounts to a unitary/canonical transformation. For example, the parameters 
could describe the orientation of the system, so that changing parameters produces a spatial 
rotation. The intrinsic properties of the dynamics (the energy levels of the quantum system, 
and the actions and Liapunov exponents of the classical system) are parameter-independent. 
In particular, degeneracies are parameter-independent, whereas generically these act as 
monopole sources of the 2-form. However, in spite of this rather trivial dependence on 
the parameters, interesting effects appear when the parameters are varied in time. 

t Present address: Depanment of Mathematics and Statistics, University of Edinburgh, The King’s Buildings, 
Mayfield Road, Edinburgh EH9 3JZ UK. 
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The paper is arranged as follows. Unitary families are introduced in section 2 and the 
associated 1- and 2-forms are obtained. Assuming the classical dynamics to be chaotic, we 
obtain (section 3 and 4) their classical limits, which for the %form gives a special case of 
the formula obtained in RB. A simple modification yields the classical limit for the integrable 
case. We consider next periodic corrections (section 5). These too agree with RB, although 
an alternative derivation avoids the analytic continuations required in the general case. In 
section 6 we show that the classical %form is closed for canonical families, and discuss 
possible implications for the general case. In section 7 we consider the reaction forces 
produced on the parameters when these an regarded as dynamical variables. To lowest 
order, the only reaction force is geometric magnetism. Examples are discussed in section 8. 

For convenience we takc parameter space. R = (RI, Rz, R3) to be three-dimensional, 
and use vector notation rather than differential forms. Thus both 1-forms and 2-forms are 
vector fields. 

2. unitary i d e s  

Consider the family of Hamiltonians 

h(R) = U(R)fiU'(R) (1) 

unitarily related to a given Hamiltonian fi. The unitary operators U($!) could, but need 
not, constitute a group representation. Assuming the energy levels of H (and therefore h) 
to be non-degenerate, we consider the geometric phases y. obtained byparallel transport 
of the eigenstates In(R)) = UIN) (here IN) denotes the eigcnstates of H) round a circuit 
C in parameter space. As is well known, yn is given by the line integral of the 1-form 
A,(R) = h Im (n IVn) round C, or (via Stokes' theorem) by the flux of the 2-form 
V,(R) = V A A. = h Im (Vnl A IVn) through a surface S bounded by C. (Note that with 
these conventions, the geometric phase factor is exp(-iy,/fi).) 

The 1- and 2-forms can be expressed in terms of the generators 6(R) of U ,  defined by 

~ ( R ) ~ F I v u ( R ) u + ( R )  (2) 

where 6 is a vector of Hermitian operators. Since 

i 
IVn) = --&In) h (3) 

it follows that 

A,(R) = hIm (n IVn) = -(nl&z) (4) 
1 I 

Vfi (R)=f i Im(Vnl~IVn)  = - - ( n l 6 ~ G l n )  = = - - ( n l @ A G ] l n ) .  (5) 

Here [fi, A61 denotes a vector of operators whose ith component is Elk ElJk@jjr G k ] ,  so that 
[&, A61 = 26 A 3. 

It is useful to verify that V, = V A A, directly from (4) and (5). For this we need the 
identity 

h 2fi 
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obtained from the curl of (3). A similar-looking though different formula holds for the 
family of operators f ( ~ )  S U Put, namely 

(7) 
I vf = -p, A 

where it is assumed that k has no explicit R dependence. 
The gauge freedom in A, (the fact that a gradient VX. may be added to it) may be 

attributed to phase conventions in either In(R)) or U(R). We takethe latter point of view, 
as it has a simple classical analogue. The unitary family h = U H U t  determines U up to 
transformations 

U + Ue-lKIfi (8) 

where %(R) = F(Z?, R) is a (parameter-dependent) function of Z?. Under (8), 

B+6+uO%ut 
A. -+ A, - (nlUV%Utln) 

while V, and y. remain unchanged. 

3. Canonical families 

To d there corresponds a given classical Hamiltonian H ( z ) ,  dehed  on 2N-dimensional 
phase space with canonical coordinates z = (q ,  p). We assume H is ergodic. The unitary 
transformations U(R) correspond to a family of canonical transformations 4(z, R), and 
&R) to the family of Hamiltonians 

(10) 
canonically related to H. 

The classical limit of B(R) gives the classical generators g(z, R), a vector of phase 
space functions whose 'flows' (regarding them as Hamiltonians in the equations of motion) 
generate the infinitesimal'displacements @(z, Rf dR) - @(z, R). More explicitly, 

h(z, R) = H(@-'(z, R)) 

O I  
V@(z, R )  = J a,g(@(z, R), R )  where J = ( - I  o) . (11) 

(In case the parameters constitute a Lie group, the generators g are related to the momentum 
map-see Abraham and Marsden (1978)-in a simple way.) Replacing commutatom [., .I 
by Poisson brackets %{., .) in (6). we have 

V A g = $ { s , W l .  (12) 
The classical limit of (7) follows similarily; if f (z ,  R )  = F ( W ' ( z ,  R)), then 

Of = (9. f 1. (13) 
Equation (13) is used several times in what follows. 

It is worth noting that the classical generators g can be determined directly from the 
canonical transformations @, without recourse to the classical limit of 3. This is not 
immediately apparent, because (1 1) involves 3,s and not g itself, and so determines g up 
to a z-independent but otherwise arbitrary 1-form. (This is not the gauge freedom of (9a), 
in which the additional 1-form is necessarily a perfect gradient.) However, as shown in the 
appendix, this arbitrariness can be removed (up to gauge transformations) by imposing (12) 
as a separate condition. 
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4. Ciassicd limit 

In (4) and (9, A. and V, are given by expectation values of 6 and G, Aa], both of which 
have well behaved classical limits. This makes it straightforward to obtain the classical limits 
of A, and V,. (In contrast, the expectation values obtained in RB involve commutators of 
time-evolved operators, whose classical limits diverge exponentially in time.) Assuming the 
classical dynamics to be ergodic (the integrable case is discussed briefly below), we take 
the classical limit of a typical expectation value (nlfln) to be the microcanonical average 

Sometimes we will write simply (f), omiting the arguments. In (14), the normalization 
factor &&(E) j dz 6 ( E  -h)  is the phase volume on the energy shell (h(z ,  R) = E ) ,  and 
its integral Q ( E )  1 dz O(E - h) is the phase volume contained inside the energy shell. 
The (canonically invariant) volume Q(E) is of c o m e  independent of R The classical 
energy E and quantum number n are related by the Weyl formula 

Q ( E )  = (27~fi)~n (15) 

according to which each quantum state occupies a phase volume of ( 2 ~ r f i ) ~ .  Thus from 
(4). (5) and (14) we obtain 

A, + AC(E, R) = - (9) 
+ VC@, R) = ((9, A d )  

the classical limits of A. and V,. 
In RB we derived the general formula 

where in general fi denotes the function f evolved along classical orbits. (More explicitly, 
if z, denotes the orbit from z at time t ,  then f r ( z ) g f ( z , ) . )  The integrand ( ( V h ) ,  A V h )  
in (U), an antisymmetric correlation function of V h ,  is assumed to decay sufficiently fast 
for the t-integral to converge. 

As we now show, for canonical families (17) and (18) are equivalent. From (13). 
V h  = (9, h).  But (9, h]  is the time derivative of g along trajectories of h, so that 

V h = [ g , h ) =  -gf - g .  
dt I f J )  

Similarily ( V h ) ,  = g,.  Substituting these into the integral in (18). we get 

There is no contribution from t = CO provided the dynamics is mixing; in this case 
(gm A 6 )  = (9) A (g) ,  and 
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since micrwanonical averages are time-invariant. With (20), (18) becomes 

1183 

(22) 
1 

a E Q  
V c ( E ,  R) = -8~ (a& @ A 9)) . 

Using the following identity (a derivation is given in appendix A of RB) 

(23) 
1 

- 8 ~  ( ~ E Q  (b A d )  = (199 
a E Q  

we see that (17) and (22) are indeed equivalent. 
If the classical dynamics is integrable, then the micrxanonical average of (14) should 

be replaced by an average over the invariant torus corresponding to the state In) = 
In,, . . . , n ~ ) .  It is then straightforward to show (similar calculations can be found in RB) 
that the resulting expressions for the 1- and 2-forms (torus averages of g and [g. Ag) 
respectively) are equivalent to the more familiar formulas of Hannay (1985) and Berry 
(1985). 

Let us consider the classical l i t  of the gauge transformation (8). The canonical family 
h = H o Q-' (here o denotes composition of functions) determines @ up to transformations 
of the form 

@+@OB ( 2 4  

where B(z, R) is the time-one flow of K ( z ,  R) = F ( H ( z ) ,  R); since K is a function of 
H, B commutes with the flow of H. Then VB = (J &VK) o B, and one can show (the 
canonical property of @ is used explicitly) that under (24), 

g -+ g + VKo @-I 

Ac + AC - ((VK) o @-I) 

and Vc is unchanged. 

5. Periodic orbit corrections 

As the Weyl formula (15) describes the smooth behaviour of the density of states 
C , 6 ( E  - En), so too the classical 2-form Vc describes the smooth behaviour of the 

(26) 

In RB we obtained the following semiclassical approximation for D, in which fluctuations 
are described by a sum over classical periodic orbits, just as for the density of states: 

spectral 2-form 

D(E, R) = z 6 ( E  - E, )V , .  
n 

Here 
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are the oscillatory amplitudes of the Gutzwiller trace formula (Gutzwiller 1990) which 
depend on the orbits’ actions Sj, periods T j ,  stabilities IMj - I1 and Maslov indices p j .  

is a 2-form associated with periodic orbits and is defined as follows. If 
zj(O, S ,  R )Z(a ,  pj)(O, S ,  R) denotes the periodic orbit as a function of the scaled time 
0 = 27rr/Tj, action S and parameters R, then 

(29) 

where (. . . ) j B ~  (or simply (. . . ) j ,  omitting other arguments) denotes the orbit average 
1 /2r  $de(. . .). (Note that the ‘dot product’ in the second member in (29) is taken over 2N 
phase space dimensions, while in the thiid member it is taken over N degrees of freedom.) 
The orbit 2-form v,is entirely analogous to the b a y  2-form for onsfreedom integrable 
systems, with periodic orbits taking the place of onedimensional tori. 

The derivation of the spectral 2-form (27) in the general case is not straightforward. 
The difficulties are connected with the exponential divergence in time of the quantity 
( ( V h ) , ,  A V ~ } ,  whose microcanonical average appears in the derivation of V c ,  and whose 
periodic orbit average appears in the derivation of v. While microcanonical averaging 
removes this divergence, periodic orbit averaging does not, and we must appeal to an 
explicit analytical continuation, as described in appendix K of RE. However, for unitary 
families there exists a more d m t  derivation of (27). Like the derivation of (17), it follows 
from (5). in which V, is expressed as the expectation value of an operator with a well 
behaved classical limit. 

For classically chaotic Hamiltonians, a spectral-weighted expectation value such as 
Tr[fiS(E - h)l = En S(E - E,)(nlEln) is given semiclassically by 

?‘(E, R) = ( V z j  . J .  AVZj)jE. = ( V q j  * AVpj) iER 

i.e. by the microcanonical average of F, weighted by the smooth density of states, plus 
periodic orbit correctionsi this result follows from the SemicIassical approximation of the 
spectral operator S(E - h) of Berry (1989). Then from (2.6). (5) and (30), the specinl 
2-form is given semiclassically by 

a E Q  1 1 .  
D c = - V c + - ~ - K j ( ( g , A g ) ) j  (27rR)N ZTl 2 

To establish the agreement of (31) with the general result (27). we need to show the 
equivalence of their orbit 2-forms. That is, we must show that 

~ c ~ ~ ( V ~ j . J - A V ~ j ) j  = i ( ( g , A g } ) j .  (32) 

To proceed, note that the periodic orbits zj = (qj .  p j )  of h depend simply on parameters 
through the canonical transformation @; explicitly, 

(33) ~ j ( 0 ,  S, R) = Q(Zj(0,  S), R) 

vzj = vwj,  R) = J .  a,gcZj). 

i V z j  . J .  A V Z ~  = $,g(zj) . J T J J .  Aa,g(Zj) =i[g, Ag)(Zj) 

where Zj(0, S) denote the corresponding periodic orbits of H. From (ll), 

(34) 
Therefore 

(35) 

since JTJ  = I, and (32) follows. 
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6. Closedness of the classical %form 

For canonical families 

Vc = V AAC = -V A (9) (36) 

so that Vc is closed ( V  . VE = 0). To verify (36). we differentiate the microcanonical 
average (14) to obtain 

(37) 
1 - v A (9) = - (V A 9) + -aB (aEa ( v h  Ag))  aEa 

and using (12) and (23) obtain 

- V A (9) = -4 (b3 47)) + (k7.W)) = f ({S. AS}) = vc . (38) 

For general systems it is an open question as to whether Vc is closed. Closedness 
is not necessarily inherited from quantum mechanics, because V . V, has monopole-lie 
singularities (of charge f2z) at points R where the energy level E.(&) is degenerate 
(Berry 1984). Thus V.Vc(E, R) describes a smoothed monopole distribution, and vanishes 
if and only if this is neutral on a classical scale. Related to this question is the fact that 
at present we know of no general formula for the classical 1-form A’. In RB we gave a 
formal argument showing Vc is closed, but with subsequent consideration this argument no 
longer seems satisfactory. There is a formal generalization of the derivation (37) which is 
more promising, but it remains to be seen whether it will lead to a conclusive result. 

Let us point out two questions conceming purely classical mechanics which depend on 
whether V c  is closed in the general case. The first concems the existence of an analogue of 
the Hannay angle for chaotic systems. Leaving aside the question of its proper definition, 
we would expect this ‘chaotic angle’ to be, in analogy with the integrable case, the flux of 
V E  through a surface S bounded by an adiabatic cycle C. In order for this flux to depend 
solely on C, it is necessary that Vc be closed. The second point concerns the geometric 
magnetism acting on slow classical systems coupled to fast chaotic ones; closedness would 
mean the geometric magnetic field is free of monopoles. 

7. Geometric magnetism without dissipation 

As in Berry and Robbins (1993), we now regard the parameters R as dynamical variables in 
their own right, coupled to an ensemble p(z ,  t )  of ‘fast’ systems. The equations of motion 
are 

where E is a small parameter which insures that R evolves slowly relative to p. Within an 
adiabatic treatment of the reaction forces on the slow system (the fast ensemble is taken 
to be microcanonical to lowest order), there appears a ‘classical Born-Oppenheimer’ force 
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- (Vh)ER at zeroth order, and at first order a velocity-dependent force -€KO R, where the 
tensor K is given by 

(40) 
def where ai = a/aRi and 7(z, E, R)gf  - ( f l E R .  

The classical 2-form Vc is recognized as the antisymmetric part of K; it produces the 
Lorentz-like force - R A  Vc called geometric magnetism. The symmetric part produces a 
dissipative force, deterministic friction, found by Wilkinson (1990). (See also Ott (1979) 
and Brown et al (1987)J Jarzynski (1993) has shown that there is also in general a 
velocity-independent force at first order, which may be expressed as the gradient of a 
memory-dependent potential. 

As we now show, deterministic friction vanishes for canonical families. (For the case 
of translations and rotations, a related result was obtained by Jarzynski (1992).) First. (21) 
implies that 8 2  = aih. Proceeding as in (ZO), 

so that 

But (gigj)+(gigj) = d(gigj)/dt, and d(gigj)/dt = 0 (time invariance of microcanonical 
averages.) Thus (gigj) and Kij are antisymmetric. 

Equation (21) implies that the classical Bom-Oppenheimer force (Vh) also vanishes 
for canonical families, and therefore so does Jarzynski’s force. Thus, to lowest order in E ,  

R = - € R A  vc. (43) 

For canonical families, the only force acting on the slow system up to second order is 
geometric magnetism. 

It is also interesting to consider ‘half-classical mechanics’ (Berry and Robbins 1993), 
in which the fast system is quantum mechanical and is described by a density operator 8. 
The equations of motion are then (cf (39)) 

Within an adiabatic treatment of the reaction forces (taking the fast system to be in an 
eigenstate), there appears the Bom-oppenheimer force -VE,(R) at zeroth order, and 
geometric magnetism -R A V, at first order. There is no friction in ‘half-classical 
mechanics’, an example of a quantum-classical discordance (see also Robbins and Berry 
(1992b)). Suppose now that L(R) is a unitary family. Then the Bom-Oppenheimer force 
vanishes (the energy levels are independent of parameters). Thus for unitary families, as 
for canonical families, the only reaction force up to second order is geometric magnetism. 



~ .. 

Geometric phase for chaotic unitary families 1187 

8. Examples 

Consider i%st the trivial case of translational families of threedimensional systems, for 
which h ( ~ ,  p, R) = H(T - R, p). In this case g(T, p ,  R) = p (momentum is the generator 
of translations), and since [ p i ,  p j }  = 0, Vc vanishes. Analogous considerations hold for 
the quantum case, so that V, vanishes too. The situation may be more interesting when 
there are external magnetic fields. Then the translated vector potential a ( r )  = A(T - R) 
can be shifted by an R-dependent gauge term V,X(T. R), which alters the dynamics (if R 
is changing in time) and changes the 2-form. A general discussion of the magnetic gauge- 
dependence of the 2-form is given by Mondragon and Berry (1989). In the special case. 
where B is uniform and the gauge is chosen to make a(r) independent of R, Jarzynski 
(personal communication) has shown that Vc = V. = B. A related discussion of geometric 
magnetism on the nuclei of atoms moving through a magnetic field is given by Li and Mead 
(1992). 

Another simple case involves rotated families, for which h ( ~ ,  p ,  R) = H ( R  . T ,  R . p);  
here R(R) is a parameterization of the three-dimensional rotations. The generators g of 
rotations correspond to components of angular momentum 1 = T A p in the following 
manner. If 6R(w) produces an infinitesimal rotation about the axis w/llwll by an angle 
llwll (so that (R(R+ 6R) - R(R)) . T = w A (R(R) . T) ) ,  then (9) . SR = ( I ) .  w, so that 

AyE, R) .6R= - .w = - (R(W . ( U P )  * w .  (44) 

Here (L)E is the microcanonically-averaged angular momentum of the given Hamiltonian 
H. Similarily, 

v c ( E ,  R) * (SRI A ~ R z )  =  ER. (WI A Wz) = ('E@). ( & ) E ) .  (WI A Wz) .  (45) 

Thus non-vanishing 1- and 2-forms require non-zero expectation values of angular 
momentum. Analogous results hold for the quantum case. While we have been considering 
ergodic systems, (45) applies to certain integrable systems such as the Foucault pendulum; 
and it should be straightforward to generalize to.three-dimensional systems with q axis of 
symmetry, such as the double pendulum and the heavy asymmetric top. 

Let us consider in more detail the restricted case of rotations in two dimensions. For 
definitiveness consider a planar billiard (a particle T ~= (x ,  y) confined to a domain and 
specularly reflected at the boundary) in a uniform magnetic field B = B i  and a tangential 
electric field E(?) = -V@(T) .  (A particular significance of the electric field is explained 
below.) The Hamiltonian is then 

H(7.p) = f @ -  A)'+ @ +  V (46) 

where A(?) = fB  A T ,  and V ( 6 )  vanishes inside the billiard and is infinite outside; we 
assume.H is ergodic. Rotating about 2 we obtain the family h ( ~ , p , @ )  = If('&(@) . 
T ,  Rz(q5) . p ) .  Parameter space is the one-dimensional circle [O < q5 < 2x1, so that the 2- 
form vanishes trivially. However, the (scalar) 1-form AC does not vanish; its integral round 
the circle (equal to 2nAC, since AC is independent of @) corresponds to the geometric phase 
accompanying a 2n-rotation of the billiard. From (44), AC(E)  = - = - ( T . A ~ ) E .  
Noting that p = v + 1B A T  and (T A v ) ~  = 0 by symmetry, we get 

AC(E) = iB[rz]E (47) 
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where [ ~ ( T ) ] E  denotes the normalized coordinate-space average o f f  over the energetically 
accessible region (@(T)  c E )  of the billiard. 

The system (46) provides a simple example for studying a possible chaos analogue of 
the Hannay angle. This should manifest itself as a time shift along the trajectories of the 
adiabatically rotated billiard. In analogy with the integrable case, we would expect it to 
be proportional to dAc/dE. Thus the potential CJ is necessary for AC to have a non-trivial 
energy dependence. 

9. Discussion 

Unitary/canonical families provide simple examples of the classical limit of the geometric 
phase for chaotic systems. In this case it is easy to show the classical 2-form is closed, 
and the alternative derivation of the periodic orbit corrections lends support to the formal 
general derivation given in RB. Certain characteristic features of the general case are absent, 
for example degeneracies and monopoles, and deterministic friction and Born-Oppenheimer 
forces-for unitary/canoncial families, the only reaction force to first order is geometric 
magnetism. 

For canonical families it may be possible to define a chaos analogue of the Hannay 
angle, and the billiard of section 8 provides a good example for numerical experiment. It 
is hoped further study may suggest how to define this chaos analogue in the general case, 
or alternatively may illustrate the impossibility of doing so. 

For a general 
parameterized family, the quanhudclassical Hamiltonians are not unitarily/canonically 
related. But perhaps there is a unitary/canonical transformation which makes them look 
‘as similar as possible’. We might expect the geometric phase and its classical limit to 
have simple (and manifestly closed) expressions in terms of the infinitesimal generators of 
these transformations. On the quantum side, we have at hand the unitary transformation 
U ( R )  which maps the eigenstates of H =/I(&), a given Hamiltonian chosen arbitrarily 
from the family, to those of &E). Is there a classical analogue? One interesting possibility 
concerns families of Anosov Hamiltonians, for which there exists a transformation mapping 
the orbits of H ( z )  g h ( z ,  &) into orbits of h(z,  R) (Arnold and Avez 1989). In general 
this transformation is not canonical, and indeed may not be differentiable. However, the 
correspondence may be worth pursuing. 

We conclude with some speculations motivated by the above. 

* drf- 
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Appendix 

The definition of the classical generators, 

VWZ, R) = J . azg(wz, R), R) (-4.1) 

determines g up to a z-independent vector field (Le. a parameter-dependent shift in the zero 
‘energies’ of the ‘Hamiltonians’ 9.) We would l i e  to remove this arbitrariness. Since 
V A V@ = 0, (A.l) implies 

v A a,g = $a&, A d .  (A.3 
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We try to fix g uniquely by imposing the z-antiderivative of (A.2), 

A g  = f i g .  4 1 .  (A.3) 

(We remark that if the parameters constitute a Lie group, then (A.2), when reformulated 
in terms of the momentum map, describes a Lie algebra homomorphism at the level of 
vector fields; and (A.3), at the level of Hamiltonians. If (A.3) is satisfied globally, the 
group action @ is said to be co-adjoint equivariant-Abraham and Marsden 1978.) 

To show that (A.3) can be satisfied, first suppose go satisfies (Al) but not (A3). and let 

(-44) a = v A 90 - &3o. Ago]. 

From (A.2), a depends only on R so that [a, f )  vanishes for arbitrary f .  Then 

V . a = - -  iv * (90, 4%) = [go, *v Ago}  = [go. *(iklo,  Ago] + 01)) = f[%. -[go, Ago)) 

where the last equality follows from the Jacobi identity for Poisson brackets. Since 
v . a  = 0, a is given (locally at least) by V A p. Letting g = go + p, one verifies 
that g satisfies (A.3). 

References 

Abraham R and Marsden J E 19718 Foundations of Mechanics (Reading, M A  Benjamin-Cummings) 
Amold V I and Avez A 1989 Ergodic Problems of Ckusienl Mechmics (Reading, M A  Addison-Wesley) 
Beny M V 1984 Proc. R Soc. A 392 45-57 
- 1985 1. Phyr. A: Math Gen. 18 15-27 
- 1989 Proc. R. Soc. A423.219-31 
Beny M V and Robbins J M 1993 Pmc. R. Soc. A 442 659-72 
Brown R, OU E and Grebagi C 1987 J. Stat. Phys. 49 511-50 
Gutmiller M C 1990 Chaos in Quantum Mechanics (Berlin: Springer) 
Hannay J H 1985 J. Phys. A: Math. Gen. 18 221-330 
Ianynski C 1992 Phys. Rev. A 46 7498-509 
- 1993 Phys. Rev. Lett. 71 839-42 
Li Yi i  and Mead C A 1992 Theor. Chim Acta 82 397-406 
Mondcagon R I and Beny M V 1989 Proc. R. Soc. A 424 263-78 
On E 1979 Phys. Rev. Lett. 42 1628-31 
Robbins J M and Beny M V 1992a Proc. R. Soc. A 436 631-61 
- 1992b J. Phys. A: Math. Gen. 25 L961-5 
Shapere A and Wilczek F (id) 1989 Geomtric Phases in Physiw(Singapore: World Scientific) 
Wilkinson M 1990 J. Phys. A: Moth Gen. 23 3603-11 


